FtsZ ring stability: of bundles, tubules, crosslinks, and curves.

نویسندگان

  • Kuo-Hsiang Huang
  • Jorge Durand-Heredia
  • Anuradha Janakiraman
چکیده

The first step in bacterial cytokinesis is the assembly of a stable but dynamic cytokinetic ring made up of the essential tubulin homolog FtsZ at the future site of division. Although FtsZ and its role in cytokinesis have been studied extensively, the precise architecture of the in vivo medial FtsZ ring (Z ring) is not well understood. Recent advances in superresolution imaging suggest that the Z ring comprises short, discontinuous, and loosely bundled FtsZ polymers, some of which are tethered to the membrane. A diverse array of regulatory proteins modulate the assembly, stability, and disassembly of the Z ring via direct interactions with FtsZ. Negative regulators of FtsZ play a critical role in ensuring the accurate positioning of FtsZ at the future site of division and in maintaining Z ring dynamics by controlling FtsZ polymer assembly/disassembly processes. Positive regulators of FtsZ are essential for tethering FtsZ polymers to the membrane and promoting the formation of stabilizing lateral interactions, permitting assembly of a mature Z ring. The past decade has seen the identification of several factors that promote FtsZ assembly, presumably through a variety of distinct molecular mechanisms. While a few of these proteins are broadly conserved, many positive regulators of FtsZ assembly are limited to small groups of closely related organisms, suggesting that FtsZ assembly is differentially modulated across bacterial species. In this review, we focus on the roles of positive regulators in Z ring assembly and in maintaining the integrity of the cytokinetic ring during the early stages of division.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative-stain electron microscopy of inside-out FtsZ rings reconstituted on artificial membrane tubules show ribbons of protofilaments.

FtsZ, the primary cytoskeletal element of the Z ring, which constricts to divide bacteria, assembles into short, one-stranded filaments in vitro. These must be further assembled to make the Z ring in bacteria. Conventional electron microscopy (EM) has failed to image the Z ring or resolve its substructure. Here we describe a procedure that enabled us to image reconstructed, inside-out FtsZ ring...

متن کامل

Bacterial Cytokinesis: FzlA Frizzes FtsZ Filaments for Fission Force

Most bacteria divide by assembling filaments of the tubulin-like protein FtsZ into a cytokinetic ring, which then constricts. A recent study suggests that Caulobacter crescentus uses a novel regulator, FzlA, to activate ring constriction by inducing helical bundles of FtsZ filaments.

متن کامل

Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro.

FtsZ, a tubulin-like GTPase that forms a dynamic ring marking the division plane of prokaryotic cells, is essential for cytokinesis. It is not known what triggers FtsZ ring assembly. In this work, we use a FtsZ-green fluorescent protein (Gfp) chimera to assay FtsZ assembly over time by using fluorescence microscopy. We show that FtsZ polymers can assemble dynamically in solution in a GTP-depend...

متن کامل

Dynamic assembly of FtsZ regulated by GTP hydrolysis.

FtsZ forms a cytokinetic ring, designated the Z ring, that directs cytokinesis in prokaryotes. It has limited sequence similarity to eukaryotic tubulins and, like tubulin, it has GTPase activity and the ability to assemble into various structures including protofilaments, bundles and minirings. By using both electron microscopy and sedimentation, we demonstrate that FtsZ from Escherichia coli u...

متن کامل

The Kil Peptide of Bacteriophage λ Blocks Escherichia coli Cytokinesis via ZipA-Dependent Inhibition of FtsZ Assembly

Assembly of the essential, tubulin-like FtsZ protein into a ring-shaped structure at the nascent division site determines the timing and position of cytokinesis in most bacteria and serves as a scaffold for recruitment of the cell division machinery. Here we report that expression of bacteriophage λ kil, either from a resident phage or from a plasmid, induces filamentation of Escherichia coli c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 195 9  شماره 

صفحات  -

تاریخ انتشار 2013